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1 Introduction

Next to relativity, quantum mechanics and cosmology, chaos is probably one
of the most groundbreaking discoveries in 20th-century theoretical physics. Al-
though some foundational work had already been done much earlier by mathe-
maticians such as Poincaré, a big breakthrough was Edward Lorenz’ 1963 paper
on convection [4]. We will go through the derivation that lead Lorenz to the
equations that are named after him and look at some basic properties of chaotic
systems.

Previously we have studied the Rayleigh-Bénard model of convection in a
fluid constrained by two horizontal plates at different temperatures. Currently,
the full solution of this problem is much too hard to be tackled analytically1.
Instead we need to resort to simplifications to gather some insight on the be-
haviour of the equations. We have seen through linear stability analysis that
the zero-velocity solution with linear vertical temperature gradient remains sta-
ble as long as the parameters of the system are such that the Rayleigh number
is small enough. When the Rayleigh number exceeds a critical threshold, we
know that the system becomes unstable to perturbations of certain frequencies.
This analysis does not tell us however how perturbations develop beyond the
linear regime. The full set of equations is non-linear, so after a short time the
non-linear terms that have been dropped in the linear analysis will start to
contribute to the development of the perturbation.

To study the effects of these non-linearities, Lorenz considered a simplified
setting [4], that allows for a more in-depth mathematical and numerical analysis.
First of all he takes the flow to be 2-dimensional by taking the velocity in one
of the horizontal directions to be zero. Furthermore, in the other horizontal
direction the flow is considered to be periodic. This consideration, together
with the fact that the vertical motion is restricted by the two plates, allows for a
double Fourier expansion of the temperature and velocity fields. By numerically
studying the evolution of a large number of Fourier components, Saltzman [5]
found evidence that when the Rayleigh number is slightly supercritical, only
three of the Fourier modes would remain significantly different from zero. For
this reason Lorenz suggested to study a dynamical system containing only these

1The Navier-Stokes equations are in fact so hard to analyse that even proving the existence
and smoothness of a solution can earn you a US$1,000,000 prize.
http://www.claymath.org/millennium/
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three modes. The derivation of this system of equations will be discussed in
Section 3. In general, this method of reducing a continuous dynamical system
by truncating the number of components in a suitably chosen basis is called the
Galerkin method.

Even though the severe Fourier truncation that Lorenz performed is not
strictly mathematically motivated, the resulting dynamical system does exhibit
some captivating features that strongly resemble properties of the actual atmo-
spheric motion. The most striking property is what is referred to as chaoticity.
This term refers to the exponential growth of small errors, making weather fore-
casts extremely difficult as the time into the future increases. While Lorenz’
analysis is mathematically quite straightforward, his discovery has sparked a
large interest from the mathematics community since [3]. In Section 2 we will
look at some of the signatures of the chaotic behaviour in the Lorenz system.

As the original article by Lorenz is an example of clear scientific writing, I
will gratefully make use of much of the reasoning found in the article, with some
added explanation. A well written introduction to chaos in geophysics that does
not require knowledge of advanced mathematics can be found in [2].

2 Derivation of the Lorenz equations

As equations of motion for the fluid we use the Bousinesq approximation, which
are given by

∂

∂t
u+ (u˜.∇˜ )u = ν∆u− ∇p

ρ0
+ (αθ)g (1)

∂

∂t
θ − uzΓ + u.∇θ = κ∆θ (2)

∇.u = 0 (3)

where u = (ux, uy, uz) is the velocity field, g = (0, 0,−g) is the gravitational
acceleration, θ is the departure of the temperature from the linear temperature
profile T (z) = TH − Γz, Γ = (TH − TL)/d and ∇ = (∂x, ∂y, ∂z) is the gradient
operator. Repeated underlinings such as . or .˜mean that the indices are con-
tracted (i.e. u.∇ = ux∂x + uy∂y + uz∂z). The boundary conditions are chosen
as in the Rayleigh-Bénard problem:

u(x, y, z) = 0 for z = 0, d (4)

θ(x, y, z) = 0 for z = 0, d (5)

In the linear analysis of the Rayleigh-Bénard problem, the advection terms
(u˜.∇˜ )u and u.∇θ could be dropped as they are of second order in the per-
turbed variables and hence give non-linear contributions. Here we will not drop
these terms, resulting in a richer behaviour of the dynamical system, but also a
mathematically more challenging set of equations.

The first simplification that we perform is to assume that there is no move-
ment in the y direction. Hence the velocity field u is of the form

u = (ux, 0, uz) (6)

Using the fact that the velocity field represents an incompressible flow, i.e.
∇.u = 0, we can conveniently write the velocity field as derivatives of a stream
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function φ(x, z):

u = (−∂zφ, 0, ∂xφ) (7)

As we have a two dimensional flow eliminating the pressure term is easier
then before. The x component of Eq. 1 contains ∂xp, the z component ∂zp.
Hence by differentiating the former with respect to z and the latter with re-
spect to x, we have two equations containing a ∂x∂zp term, which drops out on
subtraction. Substituting the stream function into this equation results in

∂t∆φ− ∂zφ∂x(∆φ) + ∂xφ∂z(∆φ) = ν∆2φ+ gα∂xθ (8)

Similarly substituting Eq. 7 for the stream function into the temperature equa-
tion, Eq. 2, we get

∂tθ − ∂zφ∂xθ + ∂xφ∂zθ = κ∆θ + Γ∂xφ . (9)

Now we make a further simplification. We assume that both the field φ and θ
are periodic functions with a period of 2l in x and therefore can be decomposed
in a Fourier series.

θ(x, z) =

∞∑
k1=−∞

∞∑
k2=1

θk1k2e
iπk1x/l sin(πk2z/d) (10)

φ(x, z) =

∞∑
k1=−∞

∞∑
k2=1

φk1k2e
iπk1x/l sin(πk2z/d) (11)

with θk1k2 = θ̄−k1k2 and φk1k2 = φ̄−k1k2 to ensure that θ and φ are real. If
we substitute these equations into Eqs. 8 and 9, using the orthogonality of
the Fourier basis, an infinite system of differential equations for the coefficients
θk1k2 and φk1k2 can be derived. From this system of coupled equations, it
can be derived that the most severe truncation of Fourier modes to retain non-
linearity is to retain θ11 and θ02 as real coefficients and φ11 as a purely imaginary
coefficient. With a rescaling to obtain nondimensional equations, we have

φ(x, z, t) =
(1− a2)κ

a

√
2X(t) sin(πx/l) sin(πz/d) (12)

θ(x, z, t) =
Rc(TH − TL)

πR

(√
2Y (t) cos(πx/l) sin(πz/d)− Z(t) sin(2πz/d)

)
(13)

where a = d/l, R = gαd3(TH−TL)
νκ and Rc = π4(1 + a2)3/a2. By writing out the

differential equations for X, Y and Z, using the orthogonality of sine and cosine

functions and rescaling the time by τ = π2 (1+a2)
d2 κt, we finally get the Lorenz

’63 equations:

Ẋ = −σX + σY (14)

Ẏ = −XZ + rX − Y (15)

Ż = XY − bZ (16)

with time derivatives in τ , r = R/Rc the rescaled Rayleigh number, b = 4/(1 +
a2) and σ = ν/κ the Prandtl number. Note that if one more mode (X, Y or Z)
would be removed, the system would no longer be non-linear.
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3 Analysis of the dynamical system

From the analysis of fixed points of the Lorenz equations and their stability, we
can already understand a bit about the Lorenz system, without having to resort
to numerical simulations. If we write Eq. 16 in the form of d(X,Y, Z)/dt =
F (X,Y, Z) then the fixed points are determined by finding the solutions to
F (X,Y, Z) = 0. It is easy to calculate that these points are r0 = (0, 0, 0) and
r± = (±

√
b(r − 1),±

√
b(r − 1), r−1). As we are working with real coordinates

X, Y and Z, the latter two points are only valid fixed points for r ≥ 1.
Now we can study the stability of these fixed points. This can be accom-

plished by looking at the Jacobian of field F in the point in question (see
App. A). The Jacobian is given by

J(X,Y, Z) =

∂XFX ∂Y FX ∂ZFX
∂XFY ∂Y FY ∂ZFY
∂XFZ ∂Y FZ ∂ZFZ

 =

 −σ σ 0
−Z + r −1 −X
Y X −b

 (17)

By calculating the eigenvalues of the Jacobian we can determine the effect of
infinitesimal perturbations around the fixed point. If the real parts of all eigen-
values are negative, the fixed point is stable. An analysis of the eigenvalues
of J(r0) shows that the eigenvalues are real whenever r > 0 and one eigen-
value turns positive when r > 1. Correspondingly, calculating the eigenvalues
of J(r±) shows that when r > 1, there is one real eigenvalue and two complex
conjugate eigenvalues. As long as σ > b+ 1 there exists a critical value for r of

σ
σ + b+ 3

σ − b− 1

below which the real parts of the eigenvalues are all negative and above which
two conjugate complex eigenvalues both acquire a positive real part.

How can we interpret the results we have found up to now? As long as
0 < r < 1 the only stable fixed point is the origin. This is in agreement with the
linear stability analysis of Rayleigh-Bénard convection that showed that as long
as R < Rc there are no growing perturbations. When r exceeds 1 the origin
looses its stability. At the same time two stable fixed points appear, namely r±.
So for a slightly supercritical Rayleigh number, steady convection rolls develop,
the sense of the flow is dependent upon the initial conditions. What happens
however when these two new fixed points loose their stability? The eigenvalues
of r± are now one real negative and two conjugate complex eigenvalues with
positive real part. In the direction of the eigenvector corresponding to the purely
real eigenvalue points are attracted towards r±. In the plane corresponding to
the eigenvectors with conjugate complex eigenvalues, points make a spiralling
motion, moving away from r±.

To find out what happens beyond the linear behaviour described above is
quite hard. We can however demonstrate that the movement of the point
(X,Y, Z) that gives the configuration of the 2D flow is restrained to a finite
volume in the space of variables. This can be seen by performing a change of
variables

X ′ = X (18)

Y ′ = Y (19)

Z ′ = Z − r − σ (20)
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Through this change, the differential equation takes the form

dXi/dt =
∑
j,k

ai,j,kXjXk −
∑
j

bi,jXj + ci , with i ∈ {1, . . . ,M} (21)

where
∑
i,j,k ai,j,kXiXjXk vanishes identically,

∑
i,j bi,jXiXj is positive definite

and ci are constants. Now take Q to be

Q =
1

2

∑
i

X2
i .

If e1, . . . , eM are the roots of the equations∑
i

(bi,j + bj,i)ej = ci

then it is easy to see that

Q̇ =
∑
i

XiẊi =
∑
i,j

bi,jeiej −
∑
i,j

bi,j(Xi − ei)(Xj − ej)

The points that fulfil Q̇ = 0 lie on an ellipse E. The points that lie inside of the
ellipse have Q̇ > 0. The surfaces of constant Q are concentric sphere around the
origin. Consider a sphere S that contains the entire ellipse E. Points that start
from the outside of the sphere can only move towards the sphere as they must
experience a decay in Q. Points that are inside of S can experience an increase
of Q while they move inside of the ellipse E, but they can not escape from the
sphere S as that would mean that Q would increase along this trajectory, while
on and outside S, Q can only decrease.

A further hint is given by the divergence of the vector field F . This diver-
gence has a constant negative value of −(σ + b + 1). The divergence gives the
instantaneous contraction or expansion rate of small volumes evolving in the
configuration space under the flow described by F (see App. B). As the diver-
gence is everywhere negative, the evolution of a small volume in the (X,Y, Z)
configuration space will constantly shrink under the flow of F .

So what happens to the points spiralling away from r±? They cannot move
infinitely far way from r±, as they have to stay inside of the sphere S. As the
divergence of the field F is everywhere negative, a naive guess might be that the
trajectories move onto a 2D surface, a 1D periodic orbit or a 0D fixed point. The
Lorenz system however showed that there is another possibility, namely that the
trajectories move on an countably infinite number of 2D surfaces. Computer
simulations show that as the points spiral away from for example r+, they
escape from the neighbourhood of r+ and start moving around r− instead.
There the point will revolve a certain number of times around r− until it moves
far enough away from r− to fall into the spiralling motion around r+ again. If
you imagine a subset of the configuration space moving under the Lorenz flow,
at each revolution around the fixed point a part of the set splits of and get
attracted by the plane through the other fixed point. After another revolution
around their respective fixed points, both parts of the set get split up again and
contracted, continuing to be stretched and folded until they form an infinite
layer of planes.
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Figure 1: The Lorenz attractor. (From [2])

3.1 Chaos

The anecdote surrounding Lorenz’ discovery of chaos is by now part of science
folklore: ”At one point I wanted to examine a solution in greater detail, so I
stopped the computer and typed in the twelve numbers from a row that the
computer had printed earlier. I started the computer again, and went out for
a cup of coffee. When I returned about an hour later, after the computer had
generated about two months of data, I found that the new solution did not
agree with the original one. At first I suspected trouble with the computer,
which occurred fairly often, but, when I compared the new solution step by step
with the older one, I found that at first the solutions were the same, and then
they would differ by one unit in the last decimal place, and then the differences
would become larger and larger, doubling in magnitude in about four simulated
days, until, after sixty days, the solutions were unrecognizably different.” [1]

Lorenz soon realized what had happened. The data on the printout which
he was copying back into his program had been rounded off slightly. By un-
knowingly introducing this small error, Lorenz discovered that the system of
equations he was studying showed a sensitive dependence on the initial condi-
tions.

To understand a bit more of what is going on, it is more convenient to look
at a discretized version of the dynamical system. This will be easier to work
with than the full system. Lorenz notes: ”The trajectory apparently leaves one
spiral only after exceeding some critical distance from the center. Moreover,
the extent to which this distance is exceeded appears to determine the point at
which the next spiral is entered; this in turn seems to determine the number of
circuits to be executed before changing spirals again. It therefore seems that
some single feature of a given circuit should predict the same feature of the
following circuit”

The distance from the center, Lorenz proposes to measure using the local
maxima of the Z variable. By plotting the next maximum Mn+1 in function of
the previous maximum MN , he obtains a map that has the shape of a tent. By
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Figure 2: The map of subsequent maxima. (From [2])

making an abstraction of this map, we can calculate some of its properties:

Mn+1 =

{
2Mn for Mn ≤ 1/2

2(1−Mn) for Mn > 1/2
(22)

The sensitive dependence on initial conditions becomes clear in this simple sys-
tem. If we write the maximum Mn in binary representation

Mn = 0.a1a2a3 . . .

then the action of the tent map is

Mn+1 =

{
0.a2a3a4 . . . if a1 = 0

0.ā2ā3 . . . ā4 if a1 = 1
(23)

If an error is introduced by changing the k-th bit ak to āk, this error will shift
to a more and more significant position at every iteration. A small error is
hence amplified exponentially fast, an error ε of 1.2−k is amplified to 1.2−k+l in
l iterations. Such exponential divergence is typical in chaotic systems. We see
that the exponential rate of growth is here given by ln 2. This growth rate is
an example of what is called the Lyapunov exponents of a dynamical system,
describing how fast error grow. In this one-dimensional example there is only one
exponent. In multi-dimensional systems, more than one exponent will appear
and a characteristic of chaotic systems is that the must be one exponent that is
positive, indicating the possibility of growing errors.
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A Linear stability analysis

Given a dynamical system

ẋ = F (x) (24)

where x is a vector in Rn of variables and F : Rn → Rn is a vector function.
Assume x0 is a fixed point, i.e. F (x0) = 0. The evolution of perturbations δx
around x0 are given by a series expansion:

d

dt
(x0 + δx) = F (x0 + δx) = F (x0) + J(x0).δx+O(δx2) (25)

where

J(x) =


∂F1

∂x1
(x) . . . ∂F1

∂xn
(x)

...
. . .

...
∂Fn

∂x1
(x) . . . ∂Fn

∂xn
(x)

 (26)

is the Jacobian matrix of the function F . The eigenvalues of J determine the
evolution of perturbations around x0. The real part of the eigenvalues indicate
the growth or decrease of the perturbations, depending on whether they are
positive or negative. The imaginary part of the eigenvalue indicates a rotation
around the fixed point.

If the dynamical system is non-linear, linear stability analysis can only tell
us something about the initial behaviour of perturbations. Consider for example
the simple one-dimensional system

ẋ = µx− x3 (27)

The origin is a fixed point of this system. If µ > 0, perturbations grow infinitely
in the corresponding linearized system

ẋ = µx (28)

In the full system however, the behaviour can be very different. The points
±√µ are stable fixed points, across which the perturbations cannot grow. If µ
is small, the range in which the linear stability correctly predicts the behaviour
is also small.

In a higher dimensional system, more complicated behaviour can emerge.
Consider the following system in spherical coordinates:

ṙ = µr − r3 (29)

θ̇ = ω + br3 (30)

If µ > 0, the origin is again an unstable fixed point. In Cartesian coordinates
x = r cos(θ), y = r sin(θ) the eigenvalues of the Jacobian in the origin are µ±iω,
indicating a spiraling motion around the origin, as the linearized set of equations
would indicate:

ṙ = µr (31)

θ̇ = ω (32)
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The full system of equations however does not spiral infinitely out from the ori-
gin, as around r =

√
µ the non-linear term starts to dominate and the trajectory

moves into a periodic motion on a circle with radius
√
µ.

The creation or annihilation of fixed points, periodic orbits or chaotic at-
tractors (as in the Lorenz system) upon the alteration of a parameter is called
a bifurcation. For a readable, more in-depth description of the above and more
bifurcations, see Strogatz’ book [6].

B Evolution of volumes

Say we look at the time evolution of a subset Ω0 in the coordinate space of a
dynamical system

ẋ = F (x) (33)

The volume V0 of the subset Ω0 at time t = 0 is given by

V0 =

∫
Ω0

dP (34)

After a short time t the set Ω0 transforms under the evolution of F to a set Ωt.
The volume of this set is

Vt =

∫
Ωt

dP ′ (35)

A point P ′ in Ωt must originate at time t = 0 in a point P in Ω0. Hence if t is
small, we can expand P prime around P

P ′ = P + F (P ).t+O(t2) (36)

Thus the integral over P ′ in Eq. 35 can be written as an integral over P where
Eq. 36 gives the change of variables. The Jacobian determinant for this change
is

det(1 + J.t+O(t2)) = 1 + Tr(J)t+O(t2) (37)

So we have

Vt = V0 + t

∫
Ω0

Tr(J(P ))dP +O(t2)) (38)

= V0 + t

∫
Ω0

∇.F (P )dP +O(t2)) (39)

showing that the divergence ∇.F determines the short time evolution of coor-
dinate volumes under F .
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